
7.9 Soleil Compensator: Consider a Soleil compensator as in Figure 7Q9 that uses a quartz 

crystal. Given a light wave with a wavelength λ ≈ 600 nm, a lower plate thickness of 5 mm, 

calculate the range of d values in Figure 7Q9 that provide a retardation from 0 to π (half-

wavelength).  

 

Figure 7Q9 

 

Solution 

The phase difference φ  between the two polarizations passing through the Soleil-Babinet 

compensator 

  φ =
2π

λ
(ne − no )(D − d)  

∴  d = D −
λφ

2π (ne − no)
 

When φ changes by ∆φ, then the change in d is ∆d, 

  ∆d =
λ∆φ

2π (ne − no )
 

∆φ = π, ∆d =
λ∆φ

2π (ne − no )
=

(600 ×10−6  mm)(π )

2π(1.5533 −1.5442)
= 0.033 mm =33 microns 

 

7.15 Transverse Pockels cell with LiNbO3  Suppose that instead of the configuration in 

Figure 7.20, the field is applied along the z-axis of the crystal, the light propagates along the y-

axis. The z-axis is the polarization of the ordinary wave and x-axis that of the extraordinary 

wave. Light propagates through as o- and e-waves. Given that Ea = V/d, where d the crystal 

length along z, the indices are 

  ′ n o ≈ no + 1
2 no

3
r13Ea  and ′ n e ≈ ne + 1

2 ne

3
r33Ea  
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 Show that the phase difference between the o- and e-waves emerging from the crystal is, 

  ∆φ = φe − φo =
2πL

λ
ne − no( )+

2πL

λ

1

2
ne

3
r33 − no

3
r13( )

V

d
  

where L is the crystal length along the y-axis.  

 Explain the first and second terms. How would you use two such Pockels cells to cancel 

the first terms in the total phase shift for the two cells.  

 If the light beam entering the crystal  is linearly polarized in the z-direction, show that 

  ∆φ =
2πne L

λ
+

2πL

λ

(ne

3r33)

2

V

d
 

 Consider a nearly monochromatic  light beam of the free-space wavelength λ = 500 nm 

and polarization along z-axis.  Calculate the voltage Vπ needed to change the output phase ∆φ 

by π given a LiNbO3 crystal with d/L = 0.01 (see table 7.2). 

Solution 

Consider the phase change between the two electric field components, 

  ∆φ = φe − φo =
2πL

λ
ne − no( )+

2πL

λ

1

2
ne

3
r33 − no

3
r13( )

V

d
 

 The first term is the natural birefringence of the crystal, just as in the calcite crystal, and 

occurs all the time, even without an applied field. The second term is the Pockels effect, applied 

field inducing a change in the refractive indices. Figure 7Q15 shows how two Pockels cells may 

be used to cancel the first terms in the combined system. 

 

Figure 7Q15 

 If the light beam is linearly polarized with its field along z, we only need to consider the 

extraordinary ray, thus we can set φo = 0. 

  ∆φ = φe =
2πLne

λ
+

2πL

λ

1

2
ne

3
r33( )

V

d
 

 The first term does not depend on the voltage. The voltage V that changes the output 

phase by π is 

Two tranverse Pockels cell phase modulators together cancel the natural
birefringence in each crystal.
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2πL

λ

1

2
ne

3
r33( )

V

d
= π   

or   V =
d

L

λ

n e

3
r33

 

 
  

 
 = (0.01)

500 ×10−9  m

(2.187)
3
(30.8 ×10

−12
 m/V)

 

 
  

 
  

∴  V = 15.5 V 

 

7.18 Bragg acousto-optic modulator diffraction: Consider an acousto-optic modulator. We 

can represent the incident and diffracted optical waves in terms of their wavevectors k and k′. 

The incident and the diffracted photons will have energies hω and hω′ and momenta hk and hk′.  
An acoustic wave is consists of lattice vibrations (vibrations of the crystal atoms) and these 

vibrations are quantized just like electromagnetic waves are quantized in terms of photons. A 

quantum of lattice vibration is called a phonon. A traveling lattice wave is essentially  a strain 

wave and can be represented by S = Socos(Ωt − Kx) where S is the instantaneous strain at x, Ω is 

the angular  acoustic frequency, and K is the wavevector, K = 2π/Λ and So is the amplitude of the 

strain wave.  A phonon has an energy  hΩ and a momentum hK. When an incoming photon is 

diffracted, it does so by interacting with a phonon; it can absorb or generate a phonon.  We can 

treat the interactions as we do between any two particles; they must obey the conservation of 

momentum and energy rules: 

  hk′ = hk ± hK 

  hω′ = hω ± hΩ 

 The positive sign case is illustrated in Figure 7Q18 which involves absorbing a phonon. 

Since the acoustic frequencies are orders of magnitude smaller than optical frequencies (Ω << 

ω), we can assume that in magnitude k′ ≈ k. Hence using the above rules, which correspond to 

Figure 7Q18 derive the Bragg diffraction condition. 

 

 

Figure 7Q18 

Solution 

Using k′ ≈ k in Figure 7Q18 we get, 

  K = 2k sinθ  

Diffracted optical beam, k′, ω′Incident optical beam, k, ω

Acoustic wave, K Ω

2θ

k′

k

K2θ

Wavevectors for the incident and diffracted optical waves and the acoustic wave.



We can substitute for the photon and phonon wavevectors in terms of phonon wavelength Λ and 

free space photon wavelength λ, 

  
2π

Λ
= 2

2πn

λ

 
 

 
 
sinθ  

which leads to the Bragg condition 

2Λsinθ = λ/n. 

 

7.20 SHG  The mismatch between k2 for the second harmonic wavevector and k1 for the 

fundamental wave is defined by ∆k = k2 − 2k1. Perfect match means k2 = 2k1 and ∆k = 0. When 

∆k ≠ 0,  then the coherence length lc is given by lc = π/(∆k). Show that 

   lc =
λ

4(n2 − n1)
 

where λ is the free-space wavelength of the fundamental wave. Suppose that a light with 

wavelength 1000 nm is passed through KDP crystal along its optic axis. Given that no = 1.509 at 

λ = 1000 nm and no = 1.530 nm at 2λ, what is the coherence length lc?  Find the percentage 

difference between n2 and n1 for a coherence length of 2 mm? 

Solution 

Let ω be the frequency of the fundamental and 2ω that of the second harmonic.  Free space 

wavelength λ = c/υ = [(2πc)/ω] where υ is the frequency and ω = 2πυ. Then,   

  ∆k = k2 − 2k1 =
(2ω )n2

c
− 2

(ω)n1

c

 
 

 
 

= 2
ω

c
(n2 − n1)  

and substituting in the expression lc = π/∆k, we get, 

  lc =
π

∆k
=

π

2
ω

c
(n2 − n1)

=
π

2
2π

λ
(n2 − n1 )

=
λ

4(n2 − n1)
 

 Substituting λ = 1000 nm = 1 µm,  n1 = 1.509, n2 = 1.53, we find 

  lc =
λ

4(n2 − n1)
=

1× 10−6

4(1.53 −1.509)
= 11.9 µµµµm. 

 Consider,  

  
(n 2 − n1)

n1

=
λ

4 lcn1

=
1×10−6

4(2 × 10
−3

)(1.509)
= 8.2×10

-5
 or 8.2××××10

-3
 % 

 

 


